

PHENIX results on reconstructed jets in p+p, d+Au, and Cu+Au collisions

Arbin Timilsina (Iowa State University)
for the PHENIX Collaboration

April 13, 2016

Jets at RHIC

- Versatility of RHIC provides ability to study jet modification in different collision geometries, system sizes, and energy densities
- Jets at RHIC interact with the QGP:
 - for a larger time fraction
 - at larger length scales in medium
 - at temperatures closer to T_c

PHENIX Detector

PHENIX central arms: $|\eta| < 0.35$, $\Delta \phi = \pi$

- Charged particle tracks are reconstructed using the Drift Chamber (DC), the Pad Chamber (PC), and the collision point
- Neutral clusters are measured in the Electromagnetic Calorimeter (EMCal)
- Beam-beam counters (3.0 < $|\eta|$ < 3.9) provide vertex, centrality, reaction plane

3

Jets in PHENIX

- Jets reconstructed using the anti- k_t algorithm
 - EMCal cluster energy + charged particle tracks
- Jet-level requirements
 - number of constituents ≥ 3
 - restriction on contribution of charged constituents
 - jet axis required to be away from detector edge
- Centrality-dependent response matrices generated by embedding PYTHIA p+p jets into real heavy ion events
 - Due to missing neutral hadronic energy and tracking inefficiency, on average, PHENIX gets ≈ 70% of the true jet energy
 - Spectra corrected for detector effects and underlying event fluctuations with unfolding procedure

Jet results from PHENIX

Two new results shown first at Quark Matter 2015

d+Au and p+p jet spectra (2008 data)

- R=0.3 anti- k_t algorithm
- Phys.Rev.Lett. 116 (2016) no.12, 122301
- Establish pQCD baseline

Cu+Au and p+p jet spectra (2012 data)

- Preliminary measurement, manuscript being written
- R=0.2 anti- k_t algorithm; choice of smaller cone size due to demands of HI environment
- First look at inclusive suppression of jet spectra by the QGP from PHENIX!

p+p collisions

Jet spectra in *p*+*p* collisions

p+p spectra: compare well with NLO pQCD calculation

 validates jet reconstruction and correction procedure in PHENIX

d+Au collisions

Centrality in d+Au collisions

- Selection of centrality categories in d+Au collisions based on total charge in Au-going beam-beam counter (-3.9 < η < -3.0)
- Glauber Monte Carlo simulation to map from the measured charge to geometric quantities
 - estimate nuclear overlap factor T_{dAu} for classes of d+Au collisions
 - previously successful with hard and soft observables

Jet yields in d+Au Collisions

d+Au per-event yields: first publication of jet production in asymmetric systems at RHIC

Minimum bias jet rate

• In centrality-integrated collisions, $R_{dAu} = 1$

Minimum bias jet rate

- In centrality-integrated collisions, $R_{dAu} = 1$
 - compares favorably to global nuclear PDF analyses (EPS09) within uncertainties

Minimum bias jet rate

- In centrality-integrated collisions, $R_{dAu} = 1$
 - compares favorably to global nuclear PDF analyzes (EPS09) within uncertainties
 - within initial state E-loss calculations, favors only small momentum transfers between parton and nuclear material

Centrality-selected jet rate

- Suppression of jet rate in central 0-20% (large N_{coll}) events
- Enhancement in 40-60% and 60-88% (small N_{coll}) events

Centrality-selected jet rate

- Suppression of jet rate in central 0-20% (large N_{coll}) events
 - comparable with initial state E-loss calculation
- Enhancement in 40-60% and 60-88% (small N_{coll}) events
 - very challenging to explain within existing frameworks

Reconciling the puzzle

One possibility: "Shrinking proton" picture

- nucleon configuration with a high-x parton (>0.1) are different that "typical" configurations
- interact more weakly than average

Geometric interpretation: as these compact configurations traverse the large nucleus, they strike fewer nucleons

- relative decrease in the N_{coll} distribution
- so peripheral $R_{dAu} > 1$, central $R_{dAu} < 1$

Cu+Au collisions

Cu+Au collisions

Cu+Au comes with challenges

- Stronger underlying event contribution
 - -> choice of smaller cone size
- Fake jet contribution
 - -> fake jet subtraction

Fake jet

Data driven method of estimating and statistically subtracting fake jet contribution

- For events in which jet is not reconstructed, position (η, ϕ) of tracks and position (η, ϕ) of clusters are randomly shuffled
- Jet reconstruction performed in these shuffled tracks and clusters
 - -> returns estimated fake jet

Fake jet

Data driven method of estimating and statistically subtracting fake jet contribution

- For events in which jet is not reconstructed, position (η, ϕ) of tracks and position (η, ϕ) of clusters are randomly shuffled
- Jet reconstruction performed in these shuffled tracks and clusters
 - -> returns estimated fake jet
- Estimated fake jet yield is statistically subtracted from the raw jet yield
 - -> returns estimated signal jet

Fake jet

- Fake jet contribution is both $p_{\rm T}$ and centrality dependent; the contribution being largest for central collisions and at low $p_{\rm T}$
 - for 0-20%, purity is 70% (93%) at 15 GeV/c (23 GeV/c)

Fake jet HIJING simulation study

- Matched jet: Reco jet which is within $\Delta R < 0.2$ of true jet
- Fake jet: Reco jet which is not matched

Fake jet estimation procedure gives comparable result!

Fake jet contribution analyzed alternately by re-running the analysis with cluster and track selections of > 2 GeV

Jet spectra in p+p and Cu+Au

- Spectra unfolded using SVD method (cross-checked using iterative Bayesian method)
 - detector effects
 - centrality dependent underlying event fluctuations

$$R_{ ext{AA}}^{ ext{cent}} = rac{\left(rac{1}{N_{ ext{evts}}^{ ext{cent}}}rac{ ext{d}N}{ ext{d}p_{ ext{T}}}
ight)_{ ext{CuAu}}}{T_{ ext{AB}}^{ ext{cent}} imes rac{ ext{d}\sigma}{ ext{d}p_{ ext{T}}}}$$

• At high p_T , consistent with 1 within the uncertainties

- Suppression shows centrality dependence
- No p_{T} dependence

 For central collisions, jets are suppressed by approximately a factor of two

- R_{CP} probes relative central vs. peripheral (60-90%) jet production
- Relatively reduced systematics

Jet suppression: R_{AA} vs. N_{part}

- Another look at the N_{part} dependence of suppression
- No p_T dependence within sensitivity over this kinematic range

Comparisons to theory

- Left: 0-20%; right: 40-60%
- SCET_G calculations done for 2 different couplings between the jet and the medium (g=2.0 and g=2.2)
- Quantitatively in line with state-of-the-art jet quenching calculations

Summary

- Progress on jet measurements in small and large systems with PHENIX detector
 - good guidance for future heavy ion jet program at RHIC
- Surprising, unexpected centrality dependence in d+Au jet rate
 - one possibility: are we sensitive to the fact that high-x nucleons are "smaller" than average?
- Preliminary measurement of a centrality-dependent suppression of jet in Cu+Au collisions
 - jets found to be suppressed by approximately a factor of two in central collisions
 - suppression shows no p_T dependence

Backup

Evaluation of systematic uncertainty

- Variation is made in unfolding procedure. The default data is unfolded with modification in unfolding procedure.
 - Shape of input spectrum: The input spectrum is obtained by modifying the power of the truth spectrum by ±0.5.
 - Unfolding is performed with Bayes method (default is SVD method).
- Variation is made in simulation. The default data is unfolded with modified response matrix.
 - Energy scale
 - EMCal energy scale: The energy of EMCal clusters is varied by ±3%
 - DC p_T scale: The p_T of tracks is varied by p_T dependent way: 2% for p_T < 10 GeV/c and increased linearly such that it is 4% at 30 GeV/c.
- ⇒ Same variation is made in both data and simulation. The modified data is unfolded with modified response matrix.
 - Jet-level cuts:
 - Default: nc >=3 && cf > 0.2 && cf < 0.7. Variation: nc >=5 && cf > 0.2 && cf < 0.6
 - Acceptance
 - Fiducial cut: The reconstructed jets are required to lie within tighter phase space.
 - East/West arm: East arm yield is unfolded with response matrix for east arm and west arm yield is unfolded with response matrix for west arm.
 - Fake jet
 - Default: Cluster energy > 0.5 GeV, track $p_T > 0.5$ GeV/c. Variation: Cluster energy > 2.0 GeV, track $p_T > 2.0$ GeV/c.

Comparisons to theory

- Left: 0-20%; right: 40-60%
- Calculations done for 2 different couplings between the jet and the medium (g=2.0 and g=2.2).

Jets in PHENIX: Jet Energy Scale

- For each $p_{\text{T, True}}$ bin, $p_{\text{T, Reco}}/p_{\text{T, True}}$ distribution is examined
- Due to missing neutral hadronic energy and tracking inefficiency, on average, PHENIX gets ≈70% of the true jet energy

Jets in PHENIX: Jet Energy Scale

- For each $p_{T, True}$ bin, $p_{T, Reco}/p_{T, True}$ distribution is examined
- Due to missing neutral hadronic energy and tracking inefficiency, on average, PHENIX gets ≈70% of the true jet energy
- For 0-20%, the UE increases the $p_{T_{,Reco}}$ up to 3.2% (1.7%) at 15 GeV/c (26 GeV/c) relative to that in p+p events

Jets in PHENIX: Jet Energy Resolution

- The width of $p_{T, Reco}/p_{T, True}$ distribution is $\approx 16-24\%$
- In PHENIX, the resolution is not driven by EMCal & DC resolution but by jet-by-jet fluctuations

Jets in PHENIX: Jet Energy Resolution

- The width of $p_{T, Reco}/p_{T, True}$ distribution is $\approx 16-24\%$
- In PHENIX, the resolution is not driven by EMCal & DC resolution but by jet-by-jet fluctuations
- For 0-20%, the UE increases the $p_{T, Reco}$ resolution up to 2.7% (1.3%) at 15 GeV/c (26 GeV/c) relative to that in p+p events

Fake jet simulation

- Matched jet: Reco jet which is within $\Delta R < 0.2$ of true jet
- Fake jet: Reco jet which is not matched

Analogous LHC results

- Same modification pattern, in the same Bjorken-x range
- Modifications to the R_{pPb} / R_{CP} shown to scale only with <u>proton-x</u> and not depend on nuclear-x

→ Same (universal) hadron physics at RHIC and the LHC?